

## **RIDA<sup>®</sup>GENE** Trichomonas vaginalis

REF PG4975



R-Biopharm AG, An der neuen Bergstraße 17, 64297 Darmstadt, Germany Phone: +49 (0) 61 51 81 02-0 / Fax: +49 (0) 61 51 81 02-20 CE

#### 1. Intended use

For *in vitro* diagnostic use. RIDA<sup>®</sup>GENE Trichomonas vaginalis is a multiplex realtime PCR for the direct, qualitative detection of *Trichomonas vaginalis* from human genital swabs and urine.

The RIDA<sup>®</sup>GENE Trichomonas vaginalis real-time PCR is intended for use as an aid in diagnosis of Trichomoniasis caused by *Trichomonas vaginalis*.

#### 2. Summary and explanation of the test

*Trichomonas vaginalis* is a human pathogenic parasite that infects the genital area. It can lead to trichomoniasis where both sexual organs and also the urinary tract can be affected. Trichomoniasis is transmitted by sexual intercourse and is either transmitted through vaginal secretion or sperm indicating the infection potential for both men and women. Worldwide, 120 million cases are described yearly, whereas a higher prevalence rate is known in women.<sup>1</sup>

According to the Centers of Disease Control and Prevention (CDC), about 3.7 million people are infected with *Trichomonas vaginalis* in the US. However, only 30% of the infected show symptoms.<sup>2</sup> Symptoms reach from discomfort in the vaginal area and with urination up to discharge. During a *Trichomonas vaginalis* infection in women, also a miscolonisation of the vaginal flora with other pathogens is observed. For example *Gardnerella vaginalis* or various stool pathogens often accompany a *Trichomonas vaginalis* infection. In pregnant women, an infection with *Trichomonas vaginalis* may lead to further complications such as premature labour or premature membrane rupture.<sup>3</sup> Complications in men are amongst others infertility or prostatitis. Besides the miscolonisation of the vaginal flora, *Trichomonas vaginalis* also plays an important role as co-factor during transmission of HIV.<sup>2</sup> The gold standard for diagnosis is still culture, however sensitivity is only about 80% and with the time to result of up to 7 days it is not suitable for timely diagnosis.

#### 3. Test principle

The RIDA<sup>®</sup>GENE Trichomonas vaginalis is a real-time PCR for the direct, qualitative detection of *Trichomonas vaginalis* from genital swabs, as well as from urine. After DNA isolation, amplification of the gene fragment (ITS1, if present) specific for *Trichomonas vaginalis* occurs.

The amplified target for *Trichomonas vaginalis* is detected with hydrolysis probes, which are labeled at one end with a quencher and at the other end with a fluorescent reporter dye (fluorophore). In the presence of a target the probes hybridize to the amplicons. During the extension step the <u>Taq-Polymerase</u> breaks the reporterquencher proximity. The reporter emits a fluorescent signal which is detected by the optical unit of a real-time PCR instrument. The fluorescence signal increases with the amount of formed amplicons. The RIDA<sup>®</sup>GENE Trichomonas vaginalis assay contains an <u>Internal Control DNA</u> (ICD) as an internal control of sample preparation procedure and/or to determine possible PCR inhibition.

#### 4. Reagents provided

## Tab. 1: Reagents provided (Reagents provided in the kit are sufficient for 100 determinations)

| Kit Code | Reagent              | Amount |                      | Lid Color |
|----------|----------------------|--------|----------------------|-----------|
| 1        | Reaction Mix         | 2x     | <mark>1050 µl</mark> | yellow    |
| 2        | Taq-Polymerase       | 1x     | <mark>80 µl</mark>   | red       |
| D        | Internal Control DNA | 2x     | <mark>1700 µl</mark> | orange    |
| Ν        | No Template Control  | 1x     | <mark>450 μΙ</mark>  | white     |
| Р        | Positive Control     | 1x     | 200 µl               | blue      |

#### 5. Storage instructions

- Protect all reagents from light and store at -20 °C. All reagents can be used until the expiration date. After expiry the quality guarantee is no longer valid.
- Carefully thaw and fully defrost reagents before using (e.g. in a refrigerator at 2 8 °C).
- Reagents can sustain up to 5 freeze/thaw cycles without influencing the assay performance (e.g. after the first thawing separate it in aliquots and freeze immediately).
- During PCR preparation all reagents should be stored cold in an appropriate way (2 8 °C).

#### 6. Additional necessary reagents and necessary equipment

The RIDA<sup>®</sup>GENE Trichomonas vaginalis multiplex real-time PCR assay is suitable for use with following extraction platforms and real-time PCR instruments:

#### Tab. 2: Necessary equipment

| Extraction platforms      |                                                              |  |
|---------------------------|--------------------------------------------------------------|--|
| R-Biopharm                | RIDA <sup>®</sup> Xtract                                     |  |
| Promega                   | Maxwell <sup>®</sup> RSC                                     |  |
| bioMérieux                | NucliSENS easy <sup>®</sup> MAG™                             |  |
| Real-time PCR instruments |                                                              |  |
| Roche                     | LightCycler <sup>®</sup> 2.0, LightCycler <sup>®</sup> 480II |  |
| Agilent Technologies      | Mx3005P                                                      |  |
| Applied Biosystems        | ABI 7500                                                     |  |
| Bio-Rad                   | CFX96™                                                       |  |
| QIAGEN                    | Rotor-Gene Q                                                 |  |

#### Note: Only use 0.1 ml tubes on the Rotor-Gene Q (QIAGEN).

If you want to use other extraction platforms or real-time PCR instruments please contact R-Biopharm at <u>mdx@r-biopharm.de</u>.

- Sterile, media-free Rayon or Nylon flocked swabs (e.g. Copan Diagnostic Inc., catalogue no. 155C or 552C)
- RIDA<sup>®</sup>GENE Color Compensation Kit IV (PG0004) for use with the LightCycler<sup>®</sup> 480II
- RIDA®GENE Color Compensation Kit II (PG0002) for use with the LightCycler® 2.0
- Real-time PCR consumables (plates, tubes, foil)
- Centrifuge with a rotor for the reaction vials
- Vortexer
- Pipettes (0.5 20 µl, 20 200 µl, 100 1000 µl)
- Filter tips
- Powder-free disposal gloves
- PCR water (BioScience grade, nuclease-free, DEPC treated water)

#### 7. Precautions for users

For in vitro diagnostic use.

This test must only be carried out by trained laboratory personnel. The guidelines for working in medical laboratories have to be followed. The instruction manual for the test procedure has to be followed. Do not pipet samples or reagents by mouth. Avoid contact with bruised skin or mucosal membranes. During handling reagents or samples, wear appropriate safety clothing (appropriate gloves, lab coat, safety goggles) and wash your hands after finishing the test procedure. Do not smoke, eat or drink in areas where samples or reagents are being used.

- Extraction, PCR preparation and the PCR run should be separated in different rooms to avoid cross-contaminations.
- Samples must be treated as potentially infectious as well as all reagents and materials being exposed to the samples and have to be handled according to the national safety regulations.
- Do not use the kit after the expiration date.

All reagents and materials used have to be disposed properly after use. Please refer to the relevant national regulations for disposal.

For more details see Safety Data Sheets (SDS) at <u>www.r-biopharm.com</u>.

#### 8. Collection and storage

#### 8.1 DNA-Preparation

For DNA isolation from dry swabs, use a commercially available DNA isolation kit (e.g. RIDA<sup>®</sup> Xtract (R-Biopharm)) or DNA extraction system (e.g. Maxwell<sup>®</sup> RSC (Promega)). Extract DNA according to the manufacturer's instructions. To isolate DNA from dry swabs the following procedure is recommended: Add 400 µl PCR water into a preparation tube. Insert the swab into the water, squeeze it and cut or break the swab stem. Cap the preparation tube tightly, vortex shortly and continue according to manufacturer's instruction of the DNA extraction kit or DNA extraction system (see also Maxwell<sup>®</sup> RSC Application ER101).

For DNA isolation from urine, use a commercially available DNA isolation kit (e.g. RIDA<sup>®</sup> Xtract (R-Biopharm)) or DNA extraction system (e.g. Maxwell<sup>®</sup> RSC (Promega)). Extract DNA according to the manufacturer's instructions (see also Maxwell<sup>®</sup> RSC Application ER100).

The RIDA<sup>®</sup>GENE Trichomonas vaginalis assay contains an <u>Internal Control DNA</u> that detects PCR inhibition, monitors reagent integrity and confirms that nucleic acid extraction was sufficient. The <u>Internal Control DNA</u> can either be used as PCR inhibition control or as extraction control for the sample preparation procedure and as PCR inhibition control.

If the Internal Control DNA is used only as a PCR inhibition control, 1 µl of the Internal Control DNA should be added to the Master- Mix (see Tab.4).

If the Internal Control DNA is used as an extraction control for the sample preparation procedure and as PCR inhibition control, 20 µl of the

Internal Control DNA has to be added during extraction procedure.

The Internal Control DNA should always be added to the specimen-lysis buffer mixture and must <u>not</u> be added directly to the specimen. We also recommend to add 1 µl of the Internal Control DNA to the negative control and positive control PCR Mix.

## 9. Test procedure

## 9.1 Master-Mix preparation

Calculate the total number of PCR reactions (sample and control reactions) needed. One positive control and one negative control must be included in each assay run.

We recommend calculating an additional volume of 10 % to compensate imprecise pipetting (see Tab. 3, Tab. 4). Thaw, mix gently and briefly centrifuge the Reaction Mix, the Taq-Polymerase, the Positive Control, the No Template Control and the Internal Control DNA before using. Keep reagents appropriately cold during working step (2 - 8 °C).

# Tab. 3: Calculation and pipetting example for 10 reactions of the Master-Mix (ICD as extraction and PCR inhibition control)

| Kit code | Master-Mix<br>components | Volume per reaction  | 10 reactions<br>(10 % extra) |
|----------|--------------------------|----------------------|------------------------------|
| 1        | Reaction Mix             | <mark>19.3 µl</mark> | <mark>212.3 μΙ</mark>        |
| 2        | Taq-Polymerase           | <mark>0.7 μΙ</mark>  | <mark>7.7 μΙ</mark>          |
|          | Total                    | 20 µl                | 220 µl                       |

Mix the components of the Master-Mix gently and briefly spin down.

# Tab. 4: Calculation and pipetting example for 10 reactions of the Master-Mix (ICD only as PCR inhibition control)

| Kit code | Master-Mix<br>components | Volume per reaction  | 10 reactions<br>(10 % extra) |
|----------|--------------------------|----------------------|------------------------------|
| 1        | Reaction Mix             | <mark>19.3 μΙ</mark> | <mark>212.3 μΙ</mark>        |
| 2        | Taq-Polymerase           | <mark>0.7 µl</mark>  | <mark>7.7 μΙ</mark>          |
| D        | Internal Control DNA     | 1.0 µl               | 11 µl                        |
|          | Total                    | 21.0 µl              | 231.0 µl                     |

Mix the components of the Master-Mix gently and briefly spin down.

#### 9.2 Preparation of the PCR-Mix

Pipette 20 µl of the Master-Mix in each reaction vial (tube or plate).

**Negative control:** Add 5 µl **No Template Control** to the pre-pipetted Master-Mix.

Note: If the Internal Control DNA is used as extraction control for the sample preparation procedure and as PCR inhibition control, we recommend to add 1 µl of the Internal Control DNA to the PCR-Mix of the negative control.

**Sample:** Add 5 µl DNA extract to the pre-pipetted Master-Mix.

**Positive control:** Add 5 µl Positive Control to the pre-pipetted Master-Mix.

Note: If the Internal Control DNA is used as extraction control for the sample preparation procedure and as PCR inhibition control, we recommend to add 1 µl of the Internal Control DNA to the PCR-Mix of the positive control.

Cover tubes or plate. Spin down and place in the real-time PCR instrument. The PCR reaction should be started according to the PCR instrument set-up (see Tab. 5, Tab. 6, Tab.7, Tab.8).

#### 9.3 PCR instrument set-up

#### 9.3.1 DNA real-time PCR profile

Tab. 5: Real-time PCR profile for LightCycler<sup>®</sup> series and Rotor-Gene Q

| Initial Denaturation                       | 1 min, 95 °C  |
|--------------------------------------------|---------------|
| Cycles                                     | 45 Cycles     |
| PCR Denaturation                           | 10 sec, 95 °C |
| Annealing/Extension                        | 15 sec, 60 °C |
| Temperature Transition Rate /<br>Ramp Rate | Maximum       |

Note: Annealing and Extension occur in the same step.

Tab. 6: Real-time PCR profile for Mx3005P, ABI 7500 and CFX96™

| Initial Denaturation                           | 1 min, 95 °C                   |
|------------------------------------------------|--------------------------------|
| Cycles                                         | 45 Cycles                      |
| <u>PCR</u> Denaturation<br>Annealing/Extension | 15 sec, 95 °C<br>30 sec, 60 °C |
| Temperature Transition Rate /<br>Ramp Rate     | Maximum                        |

Note: Annealing and Extension occur in the same step.

#### 9.3.2 Universal real-time PCR profile

Note: The universal real-time PCR profile should only be used for DNA assays when combining RIDA<sup>®</sup>GENE DNA and RIDA<sup>®</sup>GENE RNA real-time PCR assays in one run.

| Reverse Transcription                      | 10 min, 58 °C |  |
|--------------------------------------------|---------------|--|
| Initial Denaturation                       | 1 min, 95 °C  |  |
| Cycles                                     | 45 Cycles     |  |
| PCR Denaturation                           | 10 sec, 95 °C |  |
| Annealing/Extension                        | 15 sec, 60 °C |  |
| Temperature Transition Rate /<br>Ramp Rate | Maximum       |  |

Tab. 7: Universal real-time PCR profile for LightCycler® series

### Note: Annealing and Extension occur in the same step.

**Tab. 8**: Universal real-time PCR profile for Mx3005P, ABI7500, Rotor-Gene Q and CFX96<sup>™</sup>

| Reverse Transcription                      | 10 min, 58 °C |  |
|--------------------------------------------|---------------|--|
| Initial Denaturation                       | 1 min, 95 °C  |  |
| Cycles                                     | 45 Cycles     |  |
| PCR Denaturation                           | 15 sec, 95 °C |  |
| Annealing/Extension                        | 30 sec, 60 °C |  |
| Temperature Transition Rate /<br>Ramp Rate | Maximum       |  |

Note: Annealing and Extension occur in the same step.

### 9.4 Detection channel set-up

| Real-time<br>PCR Gerät    | Detection             | Detection<br>Channel | Note                                            |  |
|---------------------------|-----------------------|----------------------|-------------------------------------------------|--|
| Roche                     | Trichomonas vaginalis | 530                  | RIDA <sup>®</sup> GENE<br>Color Compensation    |  |
| 2.0                       | ICD                   | 560                  | Kit II (PG0002) is<br>required                  |  |
| Roche                     | Trichomonas vaginalis | 465/510              | RIDA <sup>®</sup> GENE<br>Color Compensation    |  |
| 480II                     | ICD                   | 533/580              | Kit IV (PG0004) is<br>required                  |  |
|                           | Trichomonas vaginalis | FAM                  | Check that passive reference option ROX is none |  |
| ABI 7300                  | ICD                   | VIC                  |                                                 |  |
| Agilent                   | Trichomonas vaginalis | FAM                  | Check that passive reference dye is none        |  |
| Mx3005P                   | ICD                   | HEX                  |                                                 |  |
| Qiagen<br>Rotor-Gene<br>Q | Trichomonas vaginalis | Green                | The gain settings have                          |  |
|                           | ICD                   | Yellow               | to be set to 5                                  |  |
| Bio-Rad                   | Trichomonas vaginalis | FAM                  |                                                 |  |
| CFX96™                    | ICD                   | VIC                  | -                                               |  |

Tab. 9: Selection of appropriate detection channels

#### 10. Quality Control

The analysis of the samples is done by the software of the used real-time PCR instrument according to the manufacturer`s instructions. Negative control and positive control have to show correct results (see Tab. 10, Fig. 1) in order to determine a valid run.

The Positive Control has a concentration of  $10^3$  copies/µl. In each PCR run it is used in a total amount of 5 x  $10^3$  copies.

Tab. 10: For a valid run, the following conditions must be met:

| Sample           | Assay result | ICD Ct            | Target Ct                               |
|------------------|--------------|-------------------|-----------------------------------------|
| Positive control | Positive     | NA * <sup>1</sup> | See Quality<br>Assurance<br>Certificate |
| Negative control | Negative     | Ct > 20           | 0                                       |

\*<sup>1</sup> No Ct value is required for the ICD to make a positive call for the positive control.

If the positive control is not positive within the specified Ct range but the negative control is valid, prepare all new reactions including the controls.

If the negative control is not negative but the positive control is valid prepare all new reactions including the controls.

If the required criteria are not met, following items have to be checked before repeating the test:

- Expiry of the used reagents
- Functionality of the used instrumentation
- Correct performance of the test procedure



Fig.1: Correct run of the positive control and negative control (*Trichomonas vaginalis*) on the LightCycler<sup>®</sup> 480II

#### 11. Result interpretation

The result interpretation is done according to Tab. 11.

| Tab.11: | Sample | interpretation |
|---------|--------|----------------|
|---------|--------|----------------|

| Target genes |                   |                                |  |
|--------------|-------------------|--------------------------------|--|
| T. vaginalis | ICD               | Result                         |  |
| positive     | positive/negative | Trichomonas vaginalis detected |  |
| negative     | positive          | Target gene not detected       |  |
| negative     | negative          | Invalid                        |  |

*Trichomonas vaginalis* is detected, if the sample DNA and the Internal Control DNA show an amplification signal in the detection system.

*Trichomonas vaginalis* is also detected, if the sample DNA shows an amplification signal but none for the Internal Control DNA in the detection system. The detection of the internal amplification control is not necessary because high concentrations of the amplicon can cause a weak or absent signal of the Internal Control DNA.

*Trichomonas vaginalis* is not detected, if the sample DNA shows no amplification signal, but an amplification signal for the Internal Control DNA in the detection system. An inhibition of the PCR reaction can be excluded by the detection of the Internal Control DNA.

A sample is invalid, if the sample DNA and Internal Control DNA show no amplification signal in the detection system. The sample contains a PCR inhibitor or a failure occurred in the extraction procedure. The extracted sample needs to be further diluted with PCR water (1:10) and amplified again, or the isolation and purification of the sample has to be improved.

#### **12. Limitations of the method**

- 1. The result of molecular analysis should not lead to the diagnosis, but always be considered in the context of medical history and symptoms of the patient.
- 2. This assay is only validated for human genital swabs and urine samples.
- 3. Inappropriate specimen collection, transport, storage and processing or a pathogen load in the specimen below the analytical sensitivity can result in false negative results.
- 4. The presence of PCR inhibitors may cause invalid results.
- 5. Mutations or polymorphisms in primer or probe binding regions may affect detection of new variants resulting in a false negative result with the RIDA<sup>®</sup>GENE Trichomonas vaginalis assay.
- 6. As with all PCR based *in vitro* diagnostic tests, extremely low levels of target below the limit of detection (LoD) may be detected, but results may not be reproducible.
- 7. A positive test result does not necessarily indicate the presence of viable organisms. However, a positive result is indicative for the presence of the target gene (ITS1).

#### 13. Performance characteristics

#### 13.1 Analytical sensitivity

The RIDA<sup>®</sup>GENE Trichomonas vaginalis multiplex real-time PCR has a detection limit of  $\ge 10$  DNA copies per reaction. The following figure 2 shows a dilution series of *Trichomonas vaginalis* ( $10^5 - 10^1$  DNA copies per µI) on the LightCycler<sup>®</sup> 480II.



**Fig. 2:** Dilution series *Trichomonas vaginalis* (10<sup>5</sup> – 10<sup>1</sup> DNA copies per μl) on the LightCycler<sup>®</sup> 480II

The detection limit of the whole procedure depends on the sample matrix, DNA extraction and DNA concentration.

## **13.2 Analytical specificity**

The analytical specificity of the RIDA<sup>®</sup>GENE Trichomonas vaginalis multiplex realtime PCR is specific for *Trichomonas vaginalis*. No cross-reaction could be detected for the following species (see Tab. 12):

Tab. 12: Cross-reactivity testing

| Adenovirus 1,<br>human, strain<br>Adenoid 71 | - | Citrobacter<br>freundii               | - | <i>Giardia</i><br><i>intestinalis</i><br>Portland 1 | - | Proteus mirabilis                      | - |
|----------------------------------------------|---|---------------------------------------|---|-----------------------------------------------------|---|----------------------------------------|---|
| Adenovirus 7,<br>human, strain<br>Gomen      | - | Clostridium<br>bifermentans           | - | <i>Giardia<br/>intestinalis</i><br>WB Clone 6       | - | Proteus vulgaris                       | - |
| Adenovirus 40,<br>human, strain<br>Dugan     | - | Clostridium<br>difficile              | - | Giardia<br>Iamblia                                  | - | Pseudomonas<br>aeruginosa              | - |
| Adenovirus 41,<br>human, strain<br>Tak       | - | Clostridium<br>novyi                  | - | HSV 1                                               | - | Rotavirus                              | - |
| Arcobacter<br>butzleri                       | - | Clostridium<br>perfringens            | - | HSV 2                                               | - | Salmonella<br>enteritidis              | - |
| Aeromonas<br>hydrophila                      | - | Clostridium<br>septicum               | - | HPV 6b                                              | - | Salmonella<br>typhimurium              | - |
| Astrovirus                                   | - | Clostridium<br>sporogenes             | - | HPV 16                                              | - | Serratia<br>liquefaciens               | - |
| Atopobium<br>vaginae                         | - | Clostridium<br>sordellii              | - | HPV 18                                              | - | <mark>Serratia</mark><br>marcescens    | - |
| Bacillus cereus                              | - | Cryptosporidium<br>muris              | - | Klebsiella<br>oxytoca                               | - | Shigella flexneri                      | - |
| Bacteroides<br>fragilis                      | - | Cryptosporidium<br>parvum             | - | Klebsiella<br>pneumoniae                            | - | Staphylococcus<br>aureus               | - |
| Campylobacter<br>coli                        | - | <i>E. coli</i><br>(O157:H7)           | - | Mobiluncus<br>curtisii subsp.<br>curtisii           | - | Staphylococcus<br>epidermidis          | - |
| Campylobacter<br>jejuni                      | - | <i>E. coli</i> (O26:H-)               | - | Mycoplasma<br>pneumoniae                            | - | Staphylococcus<br>saprophyticus        | - |
| Campylobacter<br>fetus subsp.<br>fetus       | - | E. coli (O6)                          | - | <mark>Mycoplasma</mark><br>fermentans               | - | Streptococcus<br>agalactiae            | - |
| Campylobacter<br>lari subsp. lari            | - | Entamoeba<br>histolytica              | - | <mark>Mycoplasma</mark><br>genitalium               | - | <mark>Treponema</mark><br>pallidum     | - |
| Campylobacter<br>upsaliensis                 | - | Enterobacter<br>cloacae               | - | <mark>Neisseria</mark><br>gonorrhoeae               | - | <mark>Ureaplasma</mark><br>urealyticum | - |
| Candida<br>albicans                          | - | Enterococcus<br>faecalis              | - | Norovirus GGI                                       | - | Vibrio<br>parahaemolyticus             | - |
| <mark>Candida</mark><br>glabrata             | - | <mark>Gardnerella</mark><br>vaginalis | - | Norovirus<br>GGII                                   | - | Yersinia<br>enterocolitica             | - |
| <mark>Chlamydia</mark><br>trachomatis        | - |                                       |   |                                                     |   |                                        |   |

## 14. Version history

| Version number          | Chapter and designation                                  |  |
|-------------------------|----------------------------------------------------------|--|
| 2014-11-09              | Release version                                          |  |
| 2018-04-18              | General revision                                         |  |
| <mark>2018-04-18</mark> | 4. Reagents provided                                     |  |
|                         | 6. Additional necessary reagents and necessary equipment |  |
|                         | 8. Collection and storage                                |  |
|                         | 9. Test procedure                                        |  |
|                         | 13. Performance characteristics                          |  |
|                         | 14. Version history                                      |  |
|                         | 15. Explanation of symbols                               |  |

## 15. Explanation of symbols

#### General symbols

| IVD       | For in vitro diagnostic use  |
|-----------|------------------------------|
| ĺ         | Consult instructions for use |
| LOT       | Lot number                   |
| $\square$ | Expiry                       |
| X         | Store at                     |
| REF       | Article number               |
| $\Sigma$  | Number of tests              |
| ~~        | Date of manufacture          |
| •••       | Manufacturer                 |
|           |                              |

## Testspecific symbols

Not applicable

#### 16. Literature

- 1. Sutton M. et al. The prevalence of Trichomonas vaginalis infection among Reproductive-age women in the United States, 2001-2004. Clin Infect Disease, 2007; 45:1319-1326.
- 2. https://www.cdc.gov/std/trichomonas/stdfact-trichomoniasis.htm accessed 18.04.2018
- 3. Soper D. Trichomoniasis. Under Control or Undercontrolled? Am J Obstet Gynecol. 2004; 190:281-290.