RIDA[®]GENE Gut Balance

real-time PCR

Art. Nr.: PG0105 100 reactions

For in vitro diagnostic use.

-20 °C

R-Biopharm AG, An der neuen Bergstraße 17, D-64297 Darmstadt, Germany Tel.: +49 (0) 61 51 81 02-0 / Telefax: +49 (0) 61 51 81 02-20 CE

1. Intended use

For *in vitro* diagnostic use. RIDA[®]GENE Gut Balance is a real-time PCR for the direct qualitative and quantitative detection of Bacteroides- and Cluster XIVa DNA from human stool samples.¹

2. Summary and explanation of the test

90% of the normal human gut flora is populated by two phylogenetic groups which exist in a symbiotic balance. *Bacteroides* are anaerobic, gram-negative bacteria which are part of the normal gut flora of the intestinal tract. In the large intestine, approximately 10¹¹ *Bacteroides*/g stool exist and are therefore the dominant bacteria in terms of numbers. The second phylogenetic group is the *firmicutes*. *Clostridium* Cluster XIVa are a class of *firmicutes* to which, besides others, *Eubacterium* spp. and *roseburia* spp. belong.

Different sources associate a disbalance of the composition of the gut flora (dysbiosis) with obesity.^{2,3} Here, a decreased number of *Bacteroides* corresponds to presence of obesity whereas at the same time an increasing number of *Eubacterium rectale* was detected in patients with obesity.^{3,4}

3. Test principle

RIDA[®]GENE Gut Balance is a real-time PCR for the direct, qualitative and quantitative detection *Bacteroides*- and Cluster XIVa DNA from human stool samples.

After DNA isolation, amplification of the gene fragment (if present) specific for *Bacteroides* und Cluster XIVa (16S-rRNA) occurs. The amplified targets are detected with hydrolysis probes, which are labeled at one end with a quencher and at the other end with a fluorescent reporter dye (fluorophore). In the presence of a target the probes hybridize to the amplicons. During the extension step, the Taqpolymerase breaks the reporter-quencher proximity. The reporter emits a fluorescent signal, which is detected by the optical unit of a real-time PCR instrument. The fluorescence signal increases with the amount of formed amplicons. With the Standard DNA A, B and C included in the kit, it is possible to quantify the results. The RIDA[®]GENE Gut Balance real-time PCR kit contains an internal control (ICD) that detects PCR inhibition, monitors reagent integrity and confirms that nucleic acid extraction was sufficient.

4. Reagents provided

Kit Code	Reagent	Amount	Lid Color
1	Reaction Mix	2x 1100 µl	yellow
2	Taq-Polymerase	1x 11 µl	red
D	Internal Control DNA	2x 1800 µl	orange
N	PCR Water	1x 500 µl	white
Р	Positive Control	1x 200 µl	blue
Α	Standard DNA A	1x 100 µl	dark blue
В	Standard DNA B	1x 100 µl	dark blue
С	Standard DNA C	1x 100 µl	dark blue

Tab. 1: Reagents provided (Reagents provided in the kit are sufficient for 100 determinations)

5. Storage instructions

- Protect all reagents from light and store at -20 °C. All reagents can be used until the expiration date. After expiry the quality guarantee is no longer valid.
- Carefully thaw reagents before using (e.g. in a refrigerator at 2 8 °C).
- Reagents can sustain up to 5 freeze/thaw cycles without influencing the assay performance (e.g. after the first thawing separate it in aliquots and freeze immediately).
- During PCR preparation all the reagents should be stored cold in an appropriate way (2 8 °C).

6. Additional equipment and materials required

- The RIDA[®]GENE Gut Balance real-time PCR Assay is suitable for use with following extraction platforms and real-time PCR instruments:
- Extraction platforms:
 - RIDA[®] Xtract

Maxwell[®] 16 (Promega)

- Real-time PCR instrument:

Roche:	LightCycler [®] 48011
Agilent Technologies:	Mx3005P
Applied Biosystems:	ABI 7500
Abbott:	m2000rt
Bio-Rad:	CFX96™
Cepheid:	SmartCycler [®]
QIAGEN:	Rotor-Gene Q

Note: Only use 0.1 ml tubes on the Rotor-Gene Q (QIAGEN).

If you want to use other extraction platforms or real-time PCR instruments please contact R-Biopharm at mdx@r-biopharm.de.

- RIDA[®]GENE Color Compensation Kit I (PG0001) for use with the LightCycler[®] 480II
- Real-time PCR consumables (plates, tubes, foil)
- Centrifuge with a rotor for the reaction vials
- Vortexer
- Pipettes (0.5 20 μl, 20 200 μl, 100 1000 μl)
- Filter tips
- Powder-free disposal gloves

7. Precautions for users

For *in-vitro* diagnostic use.

This test must only be carried out by trained laboratory personnel. The guidelines for working in medical laboratories have to be followed. The instruction manual for the test procedure has to be followed. Do not pipet samples or reagents by mouth. Avoid contact with bruised skin or mucosal membranes. During handling reagents or samples, wear appropriate safety clothing (appropriate gloves, lab coat, safety goggles) and wash your hands after finishing the test procedure. Do not smoke, eat or drink in areas where samples or reagents are being used.

- Extraction, PCR preparation and the PCR run should be separated in different rooms to avoid cross-contaminations.
- Samples must be treated as potentially infectious as well as all reagents and materials being exposed to the samples and have to be handled according to the national safety regulations.
- Do not use the kit after the expiration date.

All reagents and materials used have to be disposed properly after use. Please refer to the relevant national regulations for disposal.

For more details see Material Safety Data Sheets (MSDS) at www.r-biopharm.com

8. Sample collection and Storage

8.1 DNA isolation from stool samples

For DNA isolation of human stool samples, use a commercially available DNA isolation kit (e.g. RIDA[®] Xtract) or DNA extraction system (e.g. Maxwell[®] 16 (Promega)). Extract DNA according to the manufacturer's instructions.

We recommend to dilute the stool samples before extraction 1:3 with water. Vortex the diluted stool sample intensely and centrifuge at 3,000 rpm for 30 sec. From the supernatant, use the appropriate volume according to manufacturer's instructions.

To isolate DNA from bronchoalveolar lavage, we recommend using a commercially available DNA extraction system (e.g. NucliSENS easy[®] MAG[™](bioMérieux)). Isolate DNA according to manufacturer's instructions.

The RIDA[®]GENE Gut Balance real-time PCR kit contains an Internal Control DNA (ICD) that detects PCR inhibition, monitors reagent integrity and confirms that nucleic acid extraction was sufficient.

If the Internal Control DNA is used as an extraction control for the sample preparation procedure **and** as PCR inhibition control, 20 µl of the Internal Control DNA has to be added during extraction procedure. The Internal Control DNA should always be added to the specimen-lysis buffer mixture and must **not** be added directly to the specimen.

If the Internal Control DNA is used only as a PCR inhibition control, 1 µl of the Internal Control DNA should be added to the Master-Mix (see Tab. 3).

9. Test procedure

9.1 Master-Mix preparation

Calculate the total number of PCR reactions (sample and control reactions) needed. One positive control and negative control must be included in each assay run.

We recommend calculating an additional volume of 10% to compensate imprecise pipetting (see Tab. 2, Tab. 3). Thaw, mix gently and briefly centrifuge the Reaction Mix, the Taq-Polymerase, the Positive Control, the PCR Water and the Internal Control DNA before using. Keep reagents appropriately cold during working step (2 - 8 °C).

Tab. 2: Calculation and pipetting example for 10 reactions of the Master-Mix

Kit code	Master-Mix components	Volume per reaction	10 reactions (10 % extra)
1	Reaction Mix	19.9 µl	218.9 µl
2	Taq-Polymerase	0.1 µl	1.1 µl
	Total	20.0 µl	220 µl

(ICD as extraction and PCR inhibition control)

Mix the components of the Master-Mix gently and briefly spin down.

(ICD only as PCR inhibition control)

Tab. 3: Calculation and pipetting example for 10 reactions of the Master-Mix

Kit Code	Master-Mix components	Volume per reaction	10 reactions (10 % extra)
1	Reaction Mix	19.9 µl	218.9 µl
2	Taq-Polymerase	0.1 µl	1.1 µl
D	Internal Control DNA	1.0 µl	11 µl
	Total	21.0 µl	231.0 µl

Mix the components of the Master-Mix gently and briefly spin down.

9.2 Preparation of the PCR-Mix

Pipette 20 µl of the Master-Mix in each reaction vial (tube or plate).

Negative control: Add 5 µl PCR Water as negative control to the pre-pipetted Master-Mix.

Note: If the ICD is used as extraction control for the sample preparation procedure **and** as PCR inhibition control, we recommend to add 1 μ I of the ICD to the negative control PCR-Mix.

Sample: Add 5 µI DNA-Extract to the pre-pipetted Master-Mix.

Positive control: Add 5 µl Positive Control to the pre-pipetted Master-Mix.

Note: If the Internal Control DNA is used as extraction control for the sample preparation procedure **and** as PCR inhibition control, we recommend to add 1 μ I of the Internal Control DNA to the positive control PCR-Mix.

Standard DNA (A, B, C): Add 5 µl Standard DNA (A, B, C) to the pre-pipetted Master-Mix in the designated reaction tubes.

Note: Using the following cyclers requires to include a standard curve in each run: SmartCycler[®] (Cepheid, closed system), ABI 7500 (Applied Biosystems), m2000rt (Abbott) and CFX96™ (Bio-Rad)

For all other cyclers, only one sample of the standard curve has to be included in the experimental set-up as calibrator for each new real-time PCR run. Here, the application of a standard curve is only required to run once per lot number.

Cover tubes or plate. Spin down and place in the real-time PCR instrument. The PCR reaction should be started according to the PCR instrument Set-up (see Tab. 4, Tab. 5).

9.3 PCR Instrument Set-up

Tab. 4: Real-time PCR profile for LightCycler[®] 480II, SmartCycler[®] and Rotor-Gene Q

Initial Denaturation	1 min, 95 °C
<u>Cycles</u> PCR Denaturation	45 Cycles 10 sec, 95 °C
Annealing/Extension	15 sec, 60 °C
Temperature Transition Rate / Ramp Rate	Maximum

Note: Annealing and Extension occur in the same step.

Note: Check that the "Manual Thres. Fluor Units" for Channel 1 is set to 30.0 and for Channel 2 and 4 is set to 5.0 on the SmartCycler® (Cepheid). Due to variations between different cyclers, it may be required to individually adapt the "Manual Thres. Fluor Units" for channel 1.

Tab. 5: Real-time PCR profile for Mx3005P, ABI 7500, m2000rt and CFX96™

Initial Denaturation	1 min, 95 °C
<u>Cycles</u>	45 Cycles
PCR Denaturation	15 sec, 95 °C
Annealing/Extension	30 sec, 60 °C
Temperature Transition Rate / Ramp Rate	Maximum

Note: Annealing and Extension occur in the same step.

Note: The total copy number per reaction of Standard DNA A, B and C has to be typed in into the Setup File of the software programme of the respective real-time PCR cycler. A total volume of 5 µl DNA is used resulting in following concentrations:

Standard DNA A: 5×10^1 copies/reaction

Standard DNA B: 5×10^3 copies/reaction

Standard DNA C: 5×10^5 copies/reaction

Note: The standard curve can be saved on the real-time PCR cycler for each parameter. Apart from the SmartCycler[®] (Cepheid, closed system), the ABI 7500 (Applied Biosystems), the m2000rt (Abbott) and the CFX96[™] (Bio-Rad) cycler, the standard curve is only required to run once per lot number. Using the SmartCycler[®] (Cepheid, closed system), the ABI 7500 (Applied Biosystems), the m2000rt (Abbott) and the CFX96[™] (Bio-Rad) cycler requires to include a standard curve in each run. For all other cyclers, only one sample of the standard curve has to be included in the experimental set-up as calibrator for each new real-time PCR run.

9.4 Detection channel Set-up

Real-time PCR Instrument	Detection	Detection Channel	Note	
Deebe	Bacteroides	465/510	RIDA [®] GENE Color Compensation Kit I (PG0001) is required	
LightCycler®	ICD	533/580		
480II	Cluster XIVa	618/660		
	Bacteroides	Kanal 1	Check that the "Manual	
Cepheid SmartCvcler [®]	ICD	Kanal 2	Channel 1 is set to 30.0	
,	Cluster XIVa	Kanal 4	and for Channel 2 and 4 is set to 5.0*	
	Bacteroides	FAM	Chook that passive	
ABI 7500	ICD	VIC	reference option ROX is	
	Cluster XIVa	Cy5		
Abbott m2000rt	Bacteroides	FAM		
	ICD	VIC	-	
	Cluster XIVa	Cy5		
Agilent Techn. Mx3005P	Bacteroides	FAM	Check that reference dye is none	
	ICD	HEX		
	Cluster XIVa	Cy5		
	Bacteroides	Green		
Qiagen Rotor-Gene Q	ICD	Yellow	The gain settings have to be set to 5	
	Cluster XIVa	Red		
Bio-Rad CFX96™	Bacteroides	FAM		
	ICD	VIC	-	
	Cluster XIVa	Cy5		

Tab. 6: Selection of appropriate detection channels

* Due to variations between different cyclers, it may be required to individually adapt the Manual Thres. Fluor Units" for channel 1.

10. Quality Control

The analysis of the samples is done by the software of the used real-time PCR instrument according to the manufacturer` s instructions. Positive and negative controls have to show correct results (see Table 7, Fig. 1) in order to determine a VALID run.

The positive control has a concentration of 10^3 copies/µl. In each PCR run it is used in a total amount of 5 x 10^3 copies.

	•		
Sample	Assay result	ICD Ct	Target Ct
PTC	Positive	NA *1	See QAC
NTC	Negative * ²	Ct > 20	0

*¹ No Ct value is required for the ICR to make a positive call for the positive control.
*² In case of a positive amplification signal of the NTC, a Ct value >36 is rated as negative.

If the Positive Control (PTC) is not positive within the specified Ct range but the Negative Control is valid, prepare all new reactions using remaining purified nucleic acids and a new Positive Control.

If the Negative Control (NTC) is not negative but the Positive control is valid prepare all new reactions using remaining purified nucleic acids and a new Negative Control.

If the required criteria are not met, following items have to be checked before repeating the test:

- Expiry of the used reagents
- Functionality of the used instrumentation
- Correct performance of the test procedure

The analysis of the samples is done by the software of the used real-time PCR instrument according to the manufacturer`s instructions. Positive and negative controls have to show correct results (see Fig. 1).

Fig. 1: Correct run of the positive and negative control (*Bacteroides*) on the LightCycler[®] 480II

Fig. 2: Correct run of the positive and negative control (Cluster XIVa) on the LightCycler[®] 480II

11. Evaluation and interpretation

The result interpretation is done according to Table 8.

Tab. 8: Sample interpretation

Bacteroides	Cluster XIVa	ICD	Ergebnis
positive	positive	positive/negative	Bacteroides & Cluster IXVa detected
negative*	negative*	positive	Target genes are not detected*
negative	negative	negative	Invalid

Bacteroides and Cluster XIVa is detected, if the sample DNA and the Internal Control DNA (ICD) show an amplification signal in the detection system.

Bacteroides and Cluster XIVa is also detected, if the sample DNA shows an amplification signal but none for the Internal Control DNA (ICD) in the detection system. The detection of the internal amplification control is not necessary, because high concentrations of the amplicon can cause a weak or absent signal of the Internal Control DNA (ICD).

Bacteroides and Cluster XIVa is not detected, if the sample DNA shows no amplification signal, but an amplification signal for the Internal Control DNA (ICD) in the detection system. An inhibition of the PCR reaction can be excluded by the detection of the Internal Control DNA (ICD).

A sample is invalid, if the sample DNA and Internal Control DNA (ICD) show no amplification signal in the detection system. The sample contains a PCR inhibitor. The extracted sample needs to be further diluted with PCR water (1:10) and re-amplified, or the isolation and purification of the sample has to be improved.

* Note: A double-negative result for Bacteroides and Cluster XIVa DNA is unlikely since both bacterial groups are human commensal bacteria. If a double-negative result occurs for Bacteroides and Cluster XIVa DNA, it is likely that, upon use of the ICD as inhibition control, the sample extraction was not successful. If a double-negative result occurs for Bacteroides and Cluster XIVa DNA, it is recommended to improve isolation and purification of the sample and repeat amplification of the sample.

11.1 Quantification of samples

To quantify *Bacteroides and Cluster XIVa*-positive samples, a standard curve with the Standard DNA A, B and C has to be performed separately. The standard curve measurement has to be saved separately. However, the same standard curve measurement can be used in all runs with products from the same lot number by importing the saved experiment.

Note: This is not valid for the following cyclers: SmartCycler[®] (Cepheid, closed system), ABI 7500 (Applied Biosystems), m2000rt (Abbott) and CFX96[™] (Bio-Rad). Here, a standard curve has to be measured with each run.

For all other cyclers, one sample of the standard curve has to be included in the experimental set-up as calibrator for each new real-time PCR run.

To quantify *Bacteroides and Cluster XIVa*-positive samples, all Standard DNA samples (A, B and C), the positive and negative control as well as the unknown samples to be quantified, have to be selected and analyzed according to the instructions of the cycler manufacturer.

Note: For further information on quantification of please contact pcr@r-biopharm.de

With the quantitative RIDA[®]GENE Gut Balance real-time PCR the amount of DNA in Copies/Reaction of the parameter is calculated. The conversion in cell concentration/g stool sample is done with a correction factor K and takes into account the dilution of the extraction procedure (dependent on the extraction kit used) and the PCR Set-up as well as the number of target sequences in the whole genome.

The conversion of the result of the quantitative RIDA[®]GENE Gut balance real-time PCR in cells/g stool is calculated with following formula:

C [cells/g stool] = c [copies/reaction] x K

C [cells/g stool]	- bacterial concentration of sample in cells/g stool
c [copies/reaction]	- DNA concentration in PCR reaction
	(result of quantitative PCR)
К	- correction factor

For the calculation of the correction factor, following information has to be considered:

- Sample dilution
- Starting volume of sample for DNA extraction
- Usage of partial sample during extraction
- DNA extract from total eluate used for PCR reaction
- Number of target sequence in the whole genome

Tab. 9: Example calculation of correction factor using RIDA[®] Xtract for sample preparation of a 1:3 diluted sample

Description	Factor
Sample dilution 1:3 before extraction	x 3
200 µl sample for extraction*	x 5
5 µI DNA extract into PCR reaction (total	x 12
eluate 60 μl (= 1/12)	
a. Target sequence contained 6x in total	x 1/6 (Bacteroides)
Bacteroides-genome or	
b. Target sequence contained 5x in total	x 1/5 (Cluster XIVa)
Cluster XIVa-genome	
Correction factor (K) for Bacteroides**	0.3 x 10 ²
Correction factor (K) for Cluster XIVa**	0.36 x 10 ²

* Result corresponds to 1 g stool

** This value can be saved in the real-time PCR instrument

Tab. 10: Example calculation of correction factor using Maxwell 16[®] LEV Blood DNA Kit AS1290 (Promega) for sample preparation of a 1:3 diluted sample

Description	Factor
Sample dilution 1:3 before extraction	x 3
300 μl sample for extraction*	x 3,33
5 μl DNA extract into PCR reaction (total	x 20
eluate 100 μl (= 1/20)	
a. Target sequence contained 6x in total	x 1/6 (Bacteroides)
Bacteroides-genome or	
b. Target sequence contained 5x in total	x 1/5 (Cluster XIVa)
Cluster XIVa-genome	
Correction factor (K) for Bacteroides**	0.33 x 10 ²
Correction factor (K) for Cluster XIVa**	0.40 x 10 ²

* Result corresponds to 1 g stool

** This value can be saved in the real-time PCR instrument

12. Limitations of the method

- 1. The result of molecular analysis should not lead to the diagnosis, but always be considered in the context of medical history and symptoms of the patient.
- 2. This assay is only validated for human stool samples.
- 3. Inappropriate specimen collection, transport, storage and processing or a pathogen load in the specimen below the analytical sensitivity can result in false negative results.
- 4. The presence of PCR inhibitors may cause invalid results.
- 5. Mutations or polymorphisms in primer or probe binding regions may affect detection of new variants resulting in a false negative result with the RIDA[®]GENE Gut Balance assay.
- 6. As with all PCR based *in vitro* diagnostic tests, extremely low levels of target below the limit of detection (LoD) may be detected, but results may not be reproducible.
- 7. A positive test result does not necessarily indicate the presence of viable organisms. However, a positive result is indicative for the presence of the target genes for *Bacteroides* und Cluster XIVa (16s-rRNA).

13. Performance characteristics

13.1 Analytical sensitivity

The RIDA[®]GENE Gut Balance real-time PCR has a limit of detection limit of \geq 10 DNA copies per reaction for *Bacteroides* and Cluster XIVa (s. Fig. 3).

Fig. 3: Dilution series *Bacteroides* $(10^5 - 10^1 \text{ DNA copies per } \mu \text{I})$ on the

Fig. 4: Dilution series Cluster XIVa $(10^5 - 10^1 \text{ DNA copies per }\mu\text{I})$ on the LightCycler[®] 480II

The detection limit of the whole procedure depends on the sample matrix, DNA extraction and DNA concentration.

13.2 Analytical specificity

The RIDA[®]GENE Gut Balance real-time PCR is specific for *Bacteroides* and Cluster XIVa. No cross-reaction could be detected for the following species (see Tab. 11):

Adenovirus	-	Candida albicans	-	<i>E. coli</i> (O26:H-)	-	Pseudomonas aeruginosa	-
Adenovirus 41, Human, Strain Tak	-	Citrobacter freundii	-	<i>E. coli</i> (O157:H7)	-	Rotavirus	-
Arcobacter butzleri	-	Clostridium difficile	-	Entamoeba histolytica	-	Salmonella enteritidis	-
Aeromonas hydrophila	-	Clostridium perfringens	-	Enterobacter cloacae	-	Salmonella typhimurium	-
Bacillus cereus	-	Clostridium bifermentans	-	Enterococcus faecalis	-	Serratia liquefaciens	-
Campylobacter coli	-	Clostridium novyi	-	Giardia intestinalis WB Clone C6	-	Shigella flexneri	-
Campylobacter jejuni	-	Clostridium sporogenes	-	Giardia intestinalis Portland 1	-	Staphylococcus aureus	-
<i>Campylobacter fetus</i> subsp. Fetus	-	Clostridium septicum	-	Giardia lamblia	-	Staphylococcus epidermidis	-
<i>Campylobacter</i> <i>lari</i> subsp. Lari	-	Clostridium sordellii	-	Klebsiella oxytoca	-	Vibrio parahaemolyticus	-
Campylobacter upsaliensis	-	E. coli (O6)	-	Proteus vulgaris	-	Yersinia enterocolitica	-
Adenovirus 1, Human, strain Adenoid 71	-	Adenovirus 7, Human, Strain Gomen	-				

g

Explanation of Symbols

IVD	For in vitro diagnostic use
i	Consult instructions for use
LOT	Lot number
	Expiry
	Store at
REF	Article number
Σ	Number of test
	Date of manufacture
	Manufacturer

Literature

- Matsuki. Real-time PCR Analysis of human intestinal microflora with 16S rRNA-gene-targeted Genus and species-specific primers. XI Congreso Nacional de Biotecnologia y Bioingenieria.
- Mai V et al. Associations between dietary habits and body mass index with gut microbiota composition and feal water genotoxicity: an observational study in African American and Caucasian American volunteers. Nutr. Journal 2009, 8: 49 – 59.
- 3. Turnbaugh P et al. A core gut microbiome in obese and lean twins. Nature 2009, 457(7228): 480 484.
- Vaarala O. Gut Microbiota and Type 1 Diabetes. Rev. Diab. Stud. 2013, 9(4): 251 -259.